Supporting information for # A GluN2A-Selective Pyridopyrimidinone Series of NMDAR Positive Allosteric Modulators with an Improved *in vivo* Profile Elisia Villemure,[†] Matthew Volgraf,[†] Yu Jiang,^ø Guosheng Wu,^ø Cuong Q. Ly,[†] Po-wai Yuen,^ø Aijun Lu,^ø Xifeng Luo,^ø Mingcui Liu,^ø Shun Zhang,^ø Patrick J. Lupardus,^β Heidi J. A. Wallweber,^β Bianca M. Liederer,^Δ Gauri Deshmukh,^Δ Emile Plise,^Δ Suzanne Tay,^Δ Tzu-Ming Wang,[∞] Jesse E. Hanson,[∞] David Hackos,[∞] Kimberly Scearce-Levie,[∞] Jacob B. Schwarz,[†] Benjamin D. Sellers^{†*} †Department of Discovery Chemistry, [∞]Department of Neurosciences, [§]Department of Biochemical and Cellular Pharmacology, ^ΔDepartment of Drug Metabolism and Pharmacokinetics, ^βDepartment of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA [®] Pharmaron-Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, PR China *Correspondence: sellers.benjamin@gene.com ## **Table of Contents:** - **3:** Figure S-1. 3D shape search identification of pyridopyrimidinone core - 4: Figure S-2. Electron density map of compound 2 bound to GluN1/GluN2A - 5: Figure S-3. Electron density map of compound 8 bound to GluN1/GluN2A - **6:** Table S-1. X-ray crystal structure data collection and refinement statistics - 7: Figure S-4. Histograms of phenyl hydrogen-to-amide nitrogen distances (A) and thiophene sulfur to amide nitrogen (B) with an edge-to-face interaction found in the Cambridge Structure Database (CSD). - 8: Table S-2. Receptor selectivity and DMPK properties of compound 1 - **9:** Figure S-5. Synthesis of GNE-5729 (**13**) - **10:** GNE-5729 (**13**) Procedures and Characterization Figure S-1. 3D shape search identification of pyridopyrimidinone core GluN2A EC50 µM, Max Potentiation % Pyridopyrimidinone compounds identified in a 3D shape search based on GNE-3419. A predicted 3D shape of GNE-3419 was used to search commercially available compounds from eMolecules. Shown are the pyridopyrimidinone-containing compounds that were ordered and the GluN2A EC₅₀'s and Maximum potentiation (EC₅₀ of "—" means no curve fit was possible. 30% = no potentiation). Figure S-2. Electron density map of Compound 2 bound to GluN1/GluN2A (PDB ID 5TP9) X-ray co-crystal structure of compound **2** (yellow) bound to GluN1 (orange) and GluN2A (Red). The electron density is shown at a contour level of 1 sigma. 144 PRO 1144 TYR ... DARG 145 PRO 1144 TYR ... DARG 146 PRO 1144 TYR ... DARG 146 PRO 1144 TYR ... DARG 147 Figure S-3. Electron density map of Compound 9 bound to GluN1/GluN2A (PDB ID 5TPA) X-Ray co-crystal structure of compound 9 (yellow) bound to GluN1 (orange) and GluN2A (Red). The electron density is shown at a contour level of 1 sigma. 116ILE Table S-1. X-ray crystal structure data collection and refinement statistics | | GluN1/GluN2A-Cmpd 2 | GluN1/GluN2A-Cmpd 9 | |---|---|---| | | PDB ID 5TP9 | PDB ID 5TPA | | Data collection | ALS 5.0.2 | ALS 5.0.2 | | Space group | P2 ₁ 2 ₁ 2 ₁ | P2 ₁ 2 ₁ 2 ₁ | | Cell dimensions | | | | a, b, c (Å) | 56.26, 89.78, 120.86 | 55.76, 90.24, 122.70 | | α, β, γ (°) | 90, 90, 90 | 90, 90, 90 | | Resolution (Å) | 50-2.40 (2.49-2.40)* | 122.66-2.48 (2.61–2.48) * | | R_{sym} or R_{merge} | 0.081 (0.0.722) | 0.077 (0.763) | | I / σI | 19.1 (2.7) | 18.6 (2.5) | | Completeness (%) | 100 (100) | 100 (100) | | Redundancy | 5.9 (6.1) | 7.1 (7.3) | | | | | | Refinement | | | | Resolution (Å) | 47.67-2.39 | 72.69-2.48 | | No. reflections | 24871 | 22620 | | $R_{\text{work}} / R_{\text{free}}$ | 19.2/23.7% | 19.0/24.1% | | No. atoms | | | | Protein | 4398 | 4349 | | Ligand/ion | 47 | 43 | | Water | 124 | 147 | | Wilson B factor | 55.2 | 62.3 | | Mean B factor | 53.1 | 55.8 | | r.m.s. deviations | | | | Bond lengths (Å) | 0.010 | 0.010 | | _ , , , , , , , , , , , , , , , , , , , | 4.00 | | | Bond angles (°) | 1.08 | 1.14 | ^{*}Values in parentheses are for highest-resolution shell. Figure S-4 Cambridge Structural Database distance statistics **A.** Histogram of phenyl hydrogen-to-amide nitrogen distances with a edge-to-face interaction found in the Cambridge Structure Database (CSD). **B.** Histogram of thiophene sulfur to amide nitrogen distances with a edge-to-face interaction found in the Cambridge Structure Database (CSD). Table S-2. Receptor Selectivity and DMPK Properties of compound 1 | MW/LogD/TPSA | MW/LogD/TPSA | | 468 / 2.7 / 75 | | |---|---|---|---|--| | NMDAR EC ₅₀ μM, (Max poter
GluN2 A/B/C/D | NMDAR EC ₅₀ μM, (Max potentiation, %) ^a GluN2 A/B/C/D | | AMPAR EC ₅₀ , μM (Max potentiation, %) ^b
GluA2 Flip/Flop | | | 0.021 (152) / (49) / 7.4 (233 | 0.021 (152) / (49) / 7.4 (233) / 6.2 (160) | | 9.1 (84) / 5.5 (88) | | | | In Vitro DI | MPK | | | | LM ^c H/R/M ^d (mL/min/kg) | 6/8/23 | РРВ ^і (%) Н/М ^ј | 96.2 / 94 | | | Hep ^e H/R/M ^d (mL/min/kg) | 6/8/17 | Mouse Brain Binding (%) | 98.6 | | | MDR1 ^f ER ^g (B:A/A:B) ^h | 2.1 | Kinetic Solubility (μΜ) | 9.3 | | | | Mouse F | PK | | | | IV Dosing (0.3 mg/kg | IV Dosing (0.3 mg/kg) ^k | | PO Dosing (10 mg/kg) ^l | | | Cl _{blood} /Cl _{blood,u} (mL min ⁻¹ kg | _J -1 ₎ 26 / 433 | F (%) | 24 | | | <i>t</i> _{1/2} (h) | 4 | AUC _{last,u} (μ M *h) | 0.20 | | | V _{ss} (L/kg) | 8.5 | C _{max,u} (μ M) ^m | 0.046 | | | | | C _{brain,u} (μ M) ⁿ | 0.013 | | | | | K _{p,uu} o | 0.62 | | ^aNMDAR EC₅₀ values were determined in the presence of EC₃₀ glutamate and saturating glycine. Max potentiation (%) at 125 μM reported if no EC₅₀ could be obtained, where 30% denotes the assay baseline (EC₃₀ glutamate). ^bAMPAR EC₅₀ values were determined in the presence of 100 μM glutamate. Max potentiation (%) at 125 μM reported if no EC₅₀ could be obtained, where 0% denotes the assay baseline due to receptor desensitization. All EC₅₀ values represent geometric means of at least two determinations. ^cLiver microsome-predicted hepatic clearance. ^dH/R/M = human/rat/mouse. ^eIn vitro stability in cryo preserved hepatocytes. ^fMDCK cells transfected with human MDR1 gene. ^gEfflux Ratio. ^hBasolateral-to-apical/apical-to-basolateral. ⁱPlasma protein binding. ^jH/M = human/mouse. ^kVehicle: 10% DMSO, 35% PEG400 in water. ^lVehicle: MCT suspension ^mFree plasma concentration at C_{max}. ⁿFree brain concentration at 1 h time point. ^oK_{p,uu} = C_{brain,u} / C_{plasma,u} at 1 h time point. Figure S-5. Synthesis of GNE-5729 (13)^a ^a Reagents and conditions: (i) NCS, CH₃CN, 80°C, 63% yield; (ii) PPA, 110°C, 31% yield; (iii) KI, K₂CO₃, CH₃CN, 80°C, 40% yield; (iv) Pd(dppf)Cl₂, K₃PO₄, 1,4-dioxane, H₂O, 90°C, 9% yield. ### **Procedure and Characterization** ### General Methods Unless otherwise indicated, all commercial reagents and anhydrous solvents were used without additional purification. 1H-NMR spectra were measured on Bruker Avance III 300, 400, or 500 MHz spectrometers. 13C-NMR spectra were measured on a Bruker Avance III 125.80 MHz spectrometer. Chemical shifts (in ppm) were referenced to internal standard tetramethylsilane $(\delta = 0 \text{ ppm})$. The reported carbon multiplicities and coupling constants are from C-F coupling. High-resolution mass spectrometry of final compounds was performed on a Thermo UHPLC/QE with a Thermo-Q Exactive mass spectrometry detector using ESI ionization, after elution on an Acquity BEH C18 (2.1 mm × 50 mm; 1.7 μm particle size) stationary phase using a gradient of water/acetonitrile (3-97% over 7 min; 0.1% formic acid in both phases). Reactions were monitored by walkup Shimadzu LCMS/UV system with LC-30AD solvent pump, 2020 MS, Sil-30AC autosampler, SPD-M30A UV detector, and CTO-20A column oven, using 2-98% acetonitrile/0.1% formic acid (or 0.01% ammonia) over 2.5 min, or by Waters Acquity LCMS system using 2–98% acetonitrile/0.1% formic acid (or 0.1% ammonia) over 2 min. Flash column chromatography purifications were done on a Teledyne Isco Combiflash Rf utilizing Silicycle HP columns. Reverse-phase purification was carried out on a Phenomenex Gemini-NX C18 (30 mm × 100 mm, 5um) with a gradient of 5-95% acetonitrile/water (with 0.1% formic acid or 0.1% NH4OH) over 10 min at 60 mL/min. Preparative SFC separations were performed on a PIC Solutions instrument, with conditions indicated in the Experimental Section. Analytical purity was greater than 95% as determined by LCMS using UV 254 nM detection unless stated otherwise. The melting point was determined by differential scanning calorimetry (DSC) (TA Instruments-Waters L.L.C.) by using 5 mg of solid sample and measuring the onset melting temperature. # Step 1: 5,6-dichloropyridin-2-amine (17) To a solution of 6-chloropyridin-2-amine (5.00 g, 38.9 mmol) in acetonitrile (50 ml) was added N-chlorosuccinimide (5.30 g, 39.3 mmol). The reaction was stirred for 18 h at 80 °C and then concentrated *in vacuo*. The residue was purified by chromatography with ethyl acetate/petroleum ether (1/3) to afford 5,6-dichloropyridin-2-amine (4.00 g, 63%) as a white solid. LCMS (ESI): $M+H^+=163.0$. ¹HNMR (300 MHz, CDCl₃) δ 7.42 (d, J=4.0 Hz, 1H), 6.63 (d, J=4.0 Hz, 1H), 5.10 (brs, 2H). Step 2: 6,7-Dichloro-2-(chloromethyl)-4H-pyrido[1,2-a]pyrimidin-4-one (18) A mixture of 5,6-dichloropyridin-2-amine (4.00 g, 24.5 mmol), ethyl 4-chloro-3-oxobutanoate (8.10 g, 49.2 mmol) and PPA (21.0 g, 182 mmol) was stirred for 1 h at 110 °C. The reaction was poured into water (50 ml) and the pH value of the solution was adjusted to 7 with sodium hydroxide (1 mol/L). The resulting solution was extracted with dichloromethane (3x200 ml) and then concentrated *in vacuo*. The residue was purified by chromatography with ethyl acetate/petroleum ether (1/3) to afford 6,7-dichloro-2-(chloromethyl)-4H-pyrido[1,2-a]pyrimidin-4-one (2.00 g, 31%) as a brown solid. LCMS (ESI): M+H⁺ = 263.0. 1 HNMR (300 MHz, CDCl₃) δ 7.58 (d, J = 4.8 Hz, 1H), 7.37 (d, J = 4.8 Hz, 1H), 6.57 (s, 1H), 4.45 (s, 2H). Step 3: 6,7-Dichloro-2-[[5-chloro-3-(trifluoromethyl)-1H-pyrazol-1-yl]methyl]-4H-pyrido[1,2-a]pyrimidin-4-one (19) To a solution of 6,7-dichloro-2-(chloromethyl)-4H-pyrido[1,2-a]pyrimidin-4-one (1.00 g, 3.80 mmol) in acetonitrile (50 mL) was added 5-chloro-3-(trifluoromethyl)-1H-pyrazole (519 mg, 3.04 mmol), potassium iodide (317 mg, 1.91 mmol) and potassium carbonate (1.05 g, 7.60 mmol). The reaction was stirred for 1 h at 80 °C. Then the resulting mixture was concentrated *inv acuo*. The residue was purified by chromatography with ethyl acetate/petroleum ether (1/9) to afford 6,7-dichloro-2-[[5-chloro-3-(trifluoromethyl)-1H-pyrazol-1-yl]methyl]-4H-pyrido[1,2-a]pyrimidin-4-one (600 mg, 40%) as yellow oil. LCMS (ESI): M+H $^+$ = 397.1; 1 HNMR (300 MHz, CDCl₃) δ 7.60 (d, J = 4.8 Hz, 1H), 7.34 (d, J = 4.8 Hz, 1H), 6.60 (s, 1H), 5.85 (s, 1H), 5.31 (s, 2H). Step 4: (1R,2R)-2-(7-chloro-2-[[5-chloro-3-(trifluoromethyl)-1H-pyrazol-1-yl]methyl]-4-oxo-4H-pyrido[1,2-a]pyrimidin-6-yl)cyclopropane-1-carbonitrile and (1S,2S)-2-(7-chloro-2-[[5-chloro-3-(trifluoromethyl)-1H-pyrazol-1-yl]methyl]-4-oxo-4H-pyrido[1,2-a]pyrimidin-6-yl)cyclopropane-1-carbonitrile (13, GNE-5729) To a solution of 6,7-dichloro-2-[[5-chloro-3-(trifluoromethyl)-1H-pyrazol-1-yl]methyl]-4H-pyrido[1,2-a]pyrimidin-4-one (440 mg, 1.11 mmol) in 1,4-dioxane/H₂O (6 mL/0.6 mL) was added 2-[(1Z)-[(difluoropotassio)-lambda3-fluoranylidene]boranyl]cyclopropane-1-carbonitrile (577 mg, 3.34 mmol), 1,1'-Bis(diphenylphosphino)ferrocenepalladiumdichloride (250 mg, 0.342 mmol) and potassium phosphate (707 mg, 3.34 mmol). The resulting solution was stirred for 15 h at 90 °C and then concentrated *in vacuo*. The residue was purified with ethyl acetate/petroleum ether (1/9) to afford the racemic product (100 mg, 21%). Then this product was purified by Chiral-Prep-HPLC with the following conditions: Column, Chiralpak IC-3, 0.46*5cm, 3um; mobile phase, Hex and EtOH (hold 30.0% EtOH in 8 min); Detector, uv 254 nm to afford two isomers: **(13)**: (Retention time, 4.082 min) GNE-5729 (1R,2R)-2-(7-chloro-2-[[5-chloro-3-(trifluoromethyl)-1H-pyrazol-1-yl]methyl]-4-oxo-4H-pyrido[1,2-a]pyrimidin-6-yl)cyclopropane-1-carbonitrile as a yellow solid (40.7 mg, 9%). [α]D -134.56 (c. 0.3, in CH₂Cl₂); mp 136 °C (crystalline form), Tg 55.2 °C (amorphous form). HRMS (ESI) Calcd for C₁₇H₁₁ON₅Cl₂F₃ (M+H)+ = 428.0287. Found: 428.0273; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 9.5 Hz, 1H), 7.33 (dd, J = 9.5, 1.0 Hz, 1H), 6.61 (s, 1H), 5.86 (s, 1H), 5.33 (s, 2H), 3.33 – 3.23 (m, 1H), 1.84 (dt, J = 9.5, 6.0 Hz, 1H), 1.53 (dt, J = 9.1, 5.7 Hz, 1H), 1.21 (ddd, J = 9.2, 7.3, 6.1 Hz, 1H).NMR (101 MHz, CDCl₃) δ 159.96, 159.57, 151.38, 143.28 (q, $J_{CF} = 39.5 \text{ Hz}$), 137.93, 137.35, 129.75, 128.27, 127.08, 120.39 (q, $J_{CF} = 269.3 \text{ Hz}$), 119.83, 104.43, 104.09, 53.41, 23.39, 17.50, 9.57. And (Retention time, 2.767 min) (1S,2S)-2-(7-chloro-2-[[5-chloro-3-(trifluoromethyl)-1H-pyrazol-1-yl]methyl]-4-oxo-4H-pyrido[1,2-a]pyrimidin-6-yl)cyclopropane-1-carbonitrile (42.3 mg, 9%) as a yellow solid. LCMS (ESI): M+H⁺ = 428.0; ¹HNMR (300 MHz, CDCl3) 7.52 (d, J = 4.8 Hz, 1H), 7.37 (d, J = 4.8 Hz, 1H), 6.64 (s, 1H), 5.86 (s, 1H), 5.34 (s, 2H), 3.32-3.24 (m, 1H), 1.88-1.77 (m, 1H), 1.57-1.50 (m, 1H), 1.28-1.22 (m, 1H).